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ABSTRACT

A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was de-

veloped by using 3-yr coincident ground radar and ATMS observations over the continental United States

(CONUS). Several major improvements to a previously published algorithm for the Special Sensor Micro-

wave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) cal-

culating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the

608S–608N region using only CONUSobservations to construct the database. It is found that the retrieved and

radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides

valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely

consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results

clearly capture the snowfall events over the RockyMountain region, while radar observations almost entirely

miss the snowfall events over this region. Further, this algorithm is applied to the 608S–608N land region. The

representative nature of rainfall over CONUS permitted the application of this algorithm to 608S–608N for

rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large

snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false

detection and overestimation caused by much colder brightness temperatures.

1. Introduction

Passive microwave observations have more direct

physical relation with the hydrometers in the atmo-

sphere relative to infrared and visible observations,

which capture the cloud-top features (Barrett and

Beaumont 1994; Petty 1995; Kidd and Levizzani 2011).

Therefore, precipitation estimates from passive micro-

wave radiometers are more accurate and are essential

for accuracy of satellite-based, high-resolution, near-

global precipitation datasets (Hou et al. 2014; Yong

et al. 2015), for example, the Tropical Rainfall Mea-

suring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA; Huffman et al. 2007), National Oce-

anic and Atmospheric Administration (NOAA) Cli-

mate Prediction Center (CPC) morphing technique

(CMORPH; Joyce et al. 2004), Global Satellite Map-

ping of Precipitation (GSMaP; Kubota et al. 2007), and

Precipitation Estimation from Remotely Sensed In-

formationUsingArtificialNeuralNetworks (PERSIANN;

Ashouri et al. 2015). In fact, the precipitation estimation

from infrared is adjusted using passive microwave ob-

servations in the aforementioned four near-global level-3

products.

Passive microwave radiometers can be grouped into

two scanning schemes: 1) conical-scanning imagers

[e.g., TRMM Microwave Imager (TMI) and Global
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Precipitation Measurement (GPM) Microwave Imager

(GMI)] and 2) cross track–scanning sounders [e.g.,

Advanced Microwave Sounding Unit (AMSU) and

Advanced Technology Microwave Sounder (ATMS)].

For conical-scanning imagers, the footprint size and

polarization remain constant regardless of the position

of the pixel in the scan line, which simplifies the radiative

transfer modeling. In contrast, the footprint size, the

polarization, and the orientation differ for each scan

position for cross track–scanning radiometers. The

sounders are primarily responsible for the retrieval of

the moisture and temperature profiles because of the

availability of channels sensitive to water vapor, oxygen,

and carbon dioxide (Grody 1993). Researchers have

historically focused more on the precipitation retrieval

algorithm development for imagers. For example, nu-

merous algorithms, either using regression model or

Bayesian technique, have been developed for the Spe-

cial Sensor Microwave Imager (SSM/I) and Special

Sensor Microwave Imager/Sounder (SSMIS; e.g.,

Spencer et al. 1989; Liu and Curry 1992; Petty 1994;

Ferraro and Marks 1995; McCollum and Ferraro 2003;

Sanò et al. 2013; You et al. 2015). Similarly, a variety of

the precipitation retrieval algorithms have also been

developed for TMI, including Kummerow et al. (2001),

Viltard et al. (2006), Wang et al. (2009), Aonashi et al.

(2009), Gopalan et al. (2010), Islam et al. (2015), and

Ebtehaj et al. (2015). The newly developed (2014 ver-

sion) fully parametric Goddard profiling algorithm

(GPROF2014) has been successfully applied to all GPM

constellation imagers, while extending this framework

to sounders is still in progress (Kummerow et al. 2015).

Less work has been done for the sounders, partially

because of the designed purpose, varying footprint size,

and mixed polarization off nadir. However, the pre-

cipitation estimations from sounders are indispensable

to produce an accurate 3-h global precipitation map. In

fact, about half of the passive microwave sensors in

GPM constellation radiometers are cross track–

scanning sounders [e.g., AMSU-A, AMSU-B, Micro-

wave Humidity Sounder (MHS), and ATMS]. Several

pioneering studies have been conducted to detect and

retrieve the precipitation using the sounders. The Mi-

crowave Surface and Precipitation Products System

(MSPPS) has been updated since 1995 at NOAA’s Na-

tional Environmental Satellite, Data, and Information

Service (NESDIS) to retrieve operational near-real-

time surface and precipitation products (e.g., total pre-

cipitable water, ice water path, rain rate, and surface

temperature) using AMSU data. The MSPPS retrieval

algorithms for each surface and precipitation variable

were later documented by Grody et al. (2001), Weng

et al. (2003), Kongoli et al. (2003), and Ferraro et al.

(2005). A regression model converts the ice water path

to a surface rain rate, where the coefficients are obtained

using cloud model results and vary for different cloud

systems (e.g., stratiform vs convective; Ferraro et al.

2000). Several validation studies showed that the

MSPPS-retrieved rain rate agrees well with ground ob-

servations (Ferraro et al. 2000; Qiu et al. 2005; Vila et al.

2007). A similar method (i.e., converting water paths to

surface rain rate) was adopted by the Microwave In-

tegrated Retrieval System (MIRS; Boukabara et al.

2011), which is currently implemented operationally to

multiple sounders (including AMSU and ATMS) at

NOAA. The MIRS is designed to estimate a compre-

hensive set of atmospheric and surface parameters (e.g.,

ice water path, liquid water path, cloud water, and

emissivity) simultaneously from microwave measure-

ments based on the 1D variational approach. Detailed

implementations of this algorithm to ATMS are de-

scribed by Boukabara et al. (2013).

Staelin and Chen (2000) and Chen and Staelin

(2003) utilized coincident observations of AMSU/

MHS brightness temperature (TB) and ground radar

observations over the United States to retrieve pre-

cipitation (both rainfall and snowfall) using only the

opaque channels (54 and 183GHz) to largely avoid the

surface contamination. It is demonstrated from case

studies that this algorithm captures the major charac-

teristics from both rainfall and snowfall. A two-stream

radiative transfer model and a cloud-resolving meso-

scale numerical weather prediction model have been

utilized by Surussavadee and Staelin (2008a) to simu-

late 122 global storms over both land and ocean at

AMSU frequencies. The global precipitation rate is

retrieved using 122 global storms simulations as the

database through the neural network method. The

retrieval results roughly agree with those fromMSPPS

(Surussavadee and Staelin 2008b). Surussavadee and

Staelin (2010) later adapted this framework to ATMS,

showing that large improvements have been made for

the retrieved precipitation rate because of the finer

pixel resolution, compared with AMSU. Laviola and

Levizzani (2011) developed a fast rain-rate retrieval

algorithm for AMSU-B and MHS, which mainly uti-

lized the water vapor strong lines around 183GHz.

Convective and stratiform rainfall systems are sepa-

rated by the TB difference between 89 and 150GHz.

The results from this algorithm show good agreement

with that from the GPROF TRMM algorithm.

Recently, a neural network approach was applied to

AMSU/MHS observations by Sanò et al. (2015), and

case studies demonstrate that the retrieved pre-

cipitation is in good agreement with ground radar and

rain gauge observations.
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Several previous studies compared the quality of the

rainfall estimation from sounders and imagers. Lin and

Hou (2008) comprehensively assessed the surface rain

retrieval from a cross track–scanning microwave

sounder (AMSU-B) and conical-scanning microwave

imagers [TMI, Advanced Microwave Scanning Radi-

ometer for Earth Observing System (AMSR-E), and

SSM/I]. Rainfall estimation characteristics from

AMSU-B over land between 1.0 and 10.0mmh21 are

similar to those from conical-scanning radiometers.

However, for instantaneous rainfall lighter than

1mmh21 and heavier than 10mmh21, the performance

of the imager is noticeably better. Wolff and Fisher

(2009) and Fisher andWolff (2011) showed thatAMSU-B

exhibited the least skill relative to ground observations

over two TRMMground validation sites, compared with

three imagers (SSM/I, AMSR-E, and TMI). Significant

efforts have been made to compare the precipitation

retrieval results from 12 passivemicrowave radiometers,

including six imagers and six sounders (Tang et al. 2014).

The imagers produce more accurate precipitation re-

trievals relative to the sounders, which tend to have a

narrower dynamic rainfall range, higher biases, and

random errors. Because of the relatively worse perfor-

mance of the sounders, TMPA, version 7, uses fewer

sounder observations than in its prior version and pri-

oritizes imager retrievals over sounders when there are

multiple observations in a single grid box (Yong

et al. 2015).

Considering the extensive daily coverage by sounders

but their relatively poor precipitation retrieval

performance, a new algorithm is necessary. Previous

work established a prototype Bayesian algorithm for

SSMIS that is stratified by ancillary information on

surface conditions and the vertical structure of pre-

cipitation (You et al. 2015). This algorithm greatly out-

performs the traditional single-database algorithm. The

primary objective of this study is to extend this algo-

rithm to ATMS. Compared with previously published

ATMS precipitation algorithms (Surussavadee and

Staelin 2010; Boukabara et al. 2013), the unique features

of this algorithm include 1) alleviating the ill-posed in-

version retrieval problem by stratifying the single data-

base into many smaller but more homogeneous

databases (in this study, there are 30 smaller databases

for rainfall retrieval and 12 smaller databases for

snowfall retrieval); 2) employing a Bayesian framework,

compared with the neural network (Surussavadee and

Staelin 2010) and regression (Boukabara et al. 2013)

approaches; and 3) simultaneously retrieving the in-

stantaneous precipitation rate and the associated un-

certainties. Further, we will demonstrate that a database

populated with observations over the continental

United States (CONUS) can be easily expanded to the

global scale by using physically meaningful parameters.

2. Data

This section describes the primary datasets used in this

work, including ground radar precipitation observations

over the CONUS and the satellite observations from

ATMS. It also discusses several ancillary datasets, in-

cluding surface type derived from climatological emis-

sivity, Modern-EraRetrospectiveAnalysis for Research

and Applications (MERRA) data, NOAA 1-km eleva-

tion data, the National Climatic Data Center (NCDC)

integrated surface database (ISD), and the Global Pre-

cipitation Climatology Centre (GPCC) monthly pre-

cipitation dataset.

a. National Mosaic and Multi-Sensor Quantitative
Precipitation Estimation

In this study, the 5-min (2min since August 2013),

1-km gridded National Mosaic and Multi-Sensor Quan-

titative Precipitation Estimation (NMQ) data (Zhang

et al. 2011b) are taken as the ground reference. To ac-

count for errors from terrain blockage and radar

brightband influence, a radar quality index (RQI) from

0 to 1 is provided for each precipitation estimation at

each grid point, with 1 indicating the highest-quality

data. In general, the RQI is smaller in complex terrain

than in flatlands and smaller in areas with low freezing

levels compared to those with high freezing levels

(Zhang et al. 2011a). In this study, only precipitation

estimates with an RQI larger than 0.5 are used to con-

struct the precipitation (rainfall and snowfall) databases.

This threshold value (0.5) is taken by considering the

trade-off between the sample size and the quality of

radar precipitation estimates. Using this threshold,

about 80% of the rainfall estimations are kept, while

only about 40% of the snowfall estimations are kept. It is

noted that the RQI is positively related with the pre-

cipitation intensity. Choosing this threshold (0.5) fil-

tered out some light precipitation rate.

Several validation studies evaluated the NMQ rainfall

performance (e.g., Wu et al. 2012; Chen et al. 2013; Tang

et al. 2014). There are positive biases in the NMQ

rainfall estimates in the central United States, compared

with gauge observations and gauge-corrected radar ob-

servations. However, this product has very high tem-

poral resolution, which ensures that enough collocated

samples with ATMS are obtained. We would like to

emphasize that it is not our purpose to consider the

NMQ as the ground truth. Instead, we use this product

to demonstrate our prototype algorithm for ATMS.

There are few evaluations regarding the NMQ snowfall
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rate. In this study, we have conducted a preliminary

snowfall rate comparison between surface gauge ob-

servations from ISD and NMQ radar estimations.

b. Advanced Technology Microwave Sounder

As the follow-on instrument to the AMSU and MHS,

the ATMS instrument on board the Suomi–National

Polar-Orbiting Partnership (Suomi-NPP) satellite was

successfully launched in October 2011, which scans

cross-track 652.88 relative to nadir at 824-km altitude

(Kim et al. 2014). There are 22 channels from ATMS,

and 96 field-of-view (FOV) samples are taken for each

scan line. In this study, 13 channels that are closely re-

lated to the precipitation process are used. They are 23.8

[quasi-vertical polarization (QV)], 31.4 (QV), 50.3

[quasi-horizontal polarization (QH)], 51.2 (QH), 52.8

(QH), 53.596 6 0.115 (QH), 88.2 (QV), 165.5 (QH),

183.31 6 1 (QH), 183.31 6 1.8 (QH), 183.31 6 3 (QH),

183.31 6 4.5 (QH), and 183.31 6 7 (QH)GHz. Here-

after, these channels will be referred to as V24, V31, . . . ,

and H183.3 6 7 for convenience. The horizontal reso-

lution at nadir is approximately 72 km for the 24- and

31-GHz channels, 32 km for channels up to 88GHz, and

16 km for the 166-GHz channel and higher-frequency

channels. The pixel size increases dramatically from the

center of the scan line to the edge. For example, the

FOV size at nadir at V88 is about 32 km, while it is 1363
60 km at the edge of the swath. The varying pixel size

needs special treatment for precipitation retrieval, as

discussed in section 4.

c. Ancillary datasets

Five ancillary datasets are utilized in this study, in-

cluding surface type data, MERRA data, GPCC

monthly precipitation data, and hourly surface gauge

observations. A brief description for each dataset is

provided below.

Aires et al. (2011) developed a Tool to Estimate

Land Surface Emissivities at Microwave frequencies

(TELSEM) based on the clear-sky microwave emissivi-

ties. These emissivity values are further condensed into 11

surface types to largely capture the surface characteris-

tics in the microwave frequency. The monthly surface

type index is put at 0.258 spatial resolution. The relative

humidity, vertical velocity, geopotential height, and

temperature profiles from MERRA are provided every

3h at approximately 0.58 resolution. Hourly surface

temperature and 2-m air temperature T2m are also

extracted from MERRA. The 1-km terrain elevation

data are provided by NOAA (Hastings and Dunbar

1998). The GPCC monthly precipitation data are a

gridded gauge-analysis product derived from quality-

controlled station data (Schneider et al. 2014). The latest

version [version 4 (V4)] of the monthly GPCC moni-

toring product with the 18 3 18 spatial resolution will be

used as a reference to compare with the ATMS-derived

rain rate over the 608S–608N land region.

The precipitation type (snow vs rain) information is

obtained from the NCDC integrated surface hourly

observations (Smith et al. 2011). Significant efforts are

made to compile the hourly precipitation observations

from numerous sources (including regular weather re-

ports and automated weather stations) into a single

common dataset. A systematic quality-control pro-

cedure is applied to all data to ensure consistency be-

tween parameters and continuity between observations.

This dataset is generally regarded as the ground ‘‘truth’’

and has been used in studies examining precipitation

trend analysis (Dai et al. 1997), extreme events moni-

toring (Vose et al. 2014), precipitation phase separation

(Dai 2008; Kongoli et al. 2015), and satellite product

validation (Linden et al. 2015). In this study, this dataset

is used to develop a snow–rain separation method for

satellite retrieval purposes and to validate the radar-

observed snowfall rate.

There are three spatial resolutions for the 13 ATMS

channels. The FOV at nadir is approximately 16 km for

166GHz and higher-frequency channels, 32 km for

channels between 50 and 88GHz, and 72 km for the

lower-frequency channels (24 and 31GHz). The reso-

lution at V88 is taken as the nominal resolution. The

four closest pixels at higher frequencies from 166GHz to

183.3 6 7GHz are chosen since the area occupied by

these four pixels is approximately the same as the FOV

of the 88-GHz channel (e.g., at nadir, 322/162 5 4), and

then the TBs from these four pixels are simply averaged

to represent the corresponding TBs at the 88-GHz res-

olution. For lower-frequency channels (i.e., 24 and

31GHz), their original coarser spatial resolution has

been used in this study. That is, the closest neighbor

pixel to the V88 pixel is chosen. This collocation process

is conceptually similar to that of Viltard et al. (2006).

Since the TB resolution at 88GHz varies along the scan

line, the corresponding NMQ precipitation rate at the

88-GHz nominal resolution is calculated by averaging

the closest N precipitation rate values to the V88 reso-

lution. The closest N NMQ observations are those in a

circle with different radii from center to edge. At nadir,

the radius is 32 km for 88GHz. However, off nadir, the

shape of the footprint becomes an ellipse. The ellipse

shape of the footprint off nadir is approximately taken

as a circle where the radius is assumed to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 3 r2

p
(where r1 and r2 are the major and minor axes, re-

spectively). For example, the closest 1024 (N5 323 32)

NMQ 1-km grid points to each V88 pixel are averaged

in the center of the scan line, while the closest 8220
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(1373 60) are averaged at the edge of the scan line. On

average, the precipitation rate at the edge is inevitably

smaller than that over the center because the averaging

is taking place over amuch larger area. For all other data

(surface type, surface temperature, and land elevation),

we use data from the closest grid. Surface temperature,

vertical velocity, relative humidity, and temperature

profiles are linearly interpolated tomatch the time of the

TB observation.

The database is constructed using coincident ATMS

and NMQ measurements from 2012 to 2013, while col-

located data from 2014 are used for algorithm valida-

tion. The MIRS retrieval result for ATMS is available

on the NOAA Comprehensive Large Array-Data

Stewardship System (CLASS; http://www.class.ngdc.

noaa.gov) from April 2014 and is used as a bench-

mark. Retrieved rain rates are also compared to the

GPCC gauge-analysis dataset.

3. Methodology

Two major statistical approaches (linear discriminant

analysis and Bayesian framework) in You et al. (2015)

will be used in this study and are briefly summarized here.

Linear discriminant analysis (LDA) is used for pre-

cipitation detection. The LDA approach condenses a

large number of variables into a single variable while

keeping as much discriminatory information as possible.

Turk et al. (2014) showed that the LDA method out-

performs the widely used scattering index method

(Grody 1991) for rainfall detection, especially in winter

months. The 13 TBs are combined into a single dis-

criminant index (DI) for rainfall detection. You et al.

(2015) demonstrated that including the vertical velocity

at 700 hPa and average relative humidity from 1000 to

700hPa improved the snowfall detection performance

by as much as 20%. Similar findings were reported by

Behrangi et al. (2015). Therefore, the vertical velocity,

relative humidity, and the 13 TBs are included in the

LDA process for snowfall detection. The probability of

detection for rainfall and snowfall is 0.86 and 0.72,

respectively.

The widely used Bayesian method (e.g., Evans et al.

1995; Kummerow et al. 1996; Seo and Liu 2005; Chiu and

Petty 2006; Noh et al. 2006; Kim et al. 2008; Sanò et al.

2013; Petty andLi 2013) in the precipitation/cloud retrieval

community can be mathematically stated as follows:

f (x jT)5 f (T j x)3 f (x)

f (T)

5
f (T j x)3 f (x)ð
f (T j x)3 f (x) dx

, (1)

where x and T represent precipitation rate and TBs,

respectively; f (x jT) is the posterior probability density

function (PDF) of x given the measured T; f (x) is the

prior PDF of x; and f (T j x) is the likelihood function of

T given the precipitation rate x.

Similar to Kummerow et al. (1996), the expected

value of x is obtained without knowing the analytical

form of the posterior PDF. In addition, principal com-

ponent analysis (PCA) is applied to the 13 TBs, and only

the first three principal components (PCs; about 98%

total variance explained) are used in the Bayesian

framework, which ensures the covariance matrix is di-

agonal. Compared to You et al. (2015), a major im-

provement of this work is that the variance (an

uncertainty metric) corresponding to each precipitation

estimate is calculated, similar to Evans et al. (2002). The

expected value of x and its corresponding variance are

computed in the following way:

E(x j u)5

ð
x3 f (u j x)3 f (x) dx
ð
f (u j x)3 f (x) dx

5
E[x3 f (u j x)]
E[ f (u j x)] and (2)

Var(x j u)5
ð
[x2E(x j u)]2f (x j u) dx , (3)

where u is the TB principal components, and E and Var

stand for the expectation and variance, respectively.

The nonraining pixels judged by the LDA approach

are not included in the Bayesian calculation process. It is

pointed out by Seo et al. (2007) and Seo et al. (2008) that

this causes the overestimation for the light rain rate

(,1mmh21) and leads to a slightly larger average rain

rate. In our current work, it is difficult to directly esti-

mate the nonraining pixel numbers over the 608S–608N
region except over CONUS. Second, adding the non-

raining pixels may lead to underestimation for the heavy

rainfall under certain situations. For example, the TBs

do not decrease significantly for heavy precipitation

from the warm rain systems because of the weak scat-

tering signature. Under this scenario, the vast majority

of the nonraining TBs will have negative impact (un-

derestimation) for the retrieved rain rate. In addition, as

pointed out by Seo et al. (2008) and demonstrated by

GPROF2014, directly adding the nonraining pixels into

the database will lead to a positive precipitation rate for

every new observation. For these reasons, we decided to

screen the precipitation first and then apply the Bayes-

ian approach to retrieve precipitation.

Following You et al. (2015), the collocated TBs and

precipitation rate are first grouped into many smaller
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databases using four parameters (surface type, surface

temperature, land elevation, and ice layer thickness).

Similar to Aonashi et al. (2009), the TB difference

(V24 2 V88) is utilized to estimate the storm-top height

through a regression model. The ice layer thickness is the

difference between storm-top height and freezing-level

height (FLH), where FLH is obtained from theMERRA

dataset. These four parameters effectively reduce the TB

variations corresponding to the same surface rain rate

and thus alleviate the ill-posed inversion issue (You et al.

2015). In each stratified database, the LDA approach is

used to judge whether a pixel is associated with rainfall

(snowfall). If a pixel is deemed as rain pixel or snow pixel,

the Bayesian technique is utilized to obtain the pre-

cipitation rate. Otherwise, the corresponding pre-

cipitation rate is assigned as 0mmh21.

The database stratification and precipitation retrieval

framework is conceptually similar to GPROF2014

(Kummerow et al. 2015). However, this algorithm dif-

fers from GPROF2014 in three main aspects: 1) the

surface type, surface temperature, land elevation,

and ice layer thickness are used in this study to stratify

the database, while surface type, surface tempera-

ture, and total precipitable water (TPW) are used in

GPROF2014; 2) the Bayesian search is conducted in PC

space in this study and TB space in GPROF2014; and 3)

the PC variance matrix is precipitation intensity de-

pendent in this study while the TB covariance matrix is

constant in GPROF2014.

4. Brightness temperature variation along the scan
line

The TB variation at each pixel position along the scan

line is investigated over three regions with relative uni-

form surface background: the Amazon forest (7.58S–
2.58N, 608–708W), the Sahara Desert (58–158N, 208E–
308W), and the southern Great Plains in the United

States (SGP; 308–408N, 908–1008W). Only noncloudy

pixels are selected to avoid the possible cloud and pre-

cipitation contamination. The noncloudy pixels are

simply defined as scenes where the TB difference be-

tween H183 6 7 and H183 6 3 is greater than 10K.

Moradi et al. (2013) concluded that this threshold is very

strict and ensures that almost all the cloudy pixels are

filtered out.

Figure 1 shows the TB variations at V24, V88, and

H183 6 7 over these three selected regions. Regardless

of the frequency and geolocation, the TBs at the edges of

the scan line are lower than those in the center of the

scan line. This is a result from the combined effects of

surface emissivity, varying polarization, and different

traveling distances in the atmosphere (Yang et al. 2013).

Specifically, the TBs are about 5K lower at the edges of

the scan line (beam position from 1 to 20 and 77 to 96)

than those in the center of the scan line (beam position

from 21 to 76) over Amazon and SGP, except for the

V24 over Amazon. The very dense vegetation possibly

contributes to the smaller differences between the edge

and center (about 2K) at V24 over Amazon. For the

Sahara Desert region, the TB difference between the

edge and center, regardless of the channel frequencies, is

about 8K. Similar to the AMSU instrument, ATMS also

shows some minor asymmetric effects across the scan

line (Weng et al. 2003), which are more evident over the

SGP than the Amazon and Sahara.

In summary, it is noticed that, regardless of the

channel frequencies and the geolocations, the TBs at the

edges of scan line are several degrees lower than those

from the center. To account for this phenomenon in the

retrieval algorithm, there are three approaches in the

literature: 1) the brightness temperatures are ‘‘cor-

rected’’ to values that would have been seen at nadir

through radiative transfer simulation or statistical re-

lation (e.g., Surussavadee and Staelin 2008a); 2) a cor-

rection factor is added in the final retrieved results, for

example, an empirical relationship is established be-

tween local zenith angle and ice water path in the

MSPPS (e.g., Ferraro et al. 2005); and 3) the pixels are

grouped into different categories using their scan posi-

tions (e.g., Liu and Seo 2013). In this study, the third

approach is selected. Ideally, one would treat each of the

96 scan positions differently and group these pixels into

96 categories. In reality, it is difficult to obtain enough

observations to populate these 96 categories. In this

work, only the edge pixels (beam positions 1–20 and 77–

96) and center pixels (beam positions 21–76) are sepa-

rated. That is, databases will be built for edge and center

pixels separately.

5. Rain and snow separation

It is necessary to construct separate databases for rain

and snow because they have very different radiometric

signatures (Sims and Liu 2015). It has long been recog-

nized that either phase of precipitation (rain or snow) can

occur when the surface temperature is within a few de-

grees of freezing (e.g., Wagner 1957; Auer 1974;

Bourgouin 2000; Dai 2008; Ye et al. 2013; Sims and Liu

2015). As expected, these studies demonstrated that the

most dominant factor for snow–rain separation is the air

temperature. Several studies (Wagner 1957; Dai 2008)

also noticed that the snow–rain transition temperature

also depends on the land elevation. Other factors, in-

cluding relative humidity and temperature lapse rate, may

also affect the snow–rain transition (Sims and Liu 2015).
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In this study, only the two most dominant factors

(elevation and air temperature) are considered. Hourly

surface weather observations of precipitation type and

2-m air temperature from MERRA over the CONUS

from 1979 to 2014 are used to determine the snowfall

probability. This period of time (1979–2014) is chosen

because of the availability of MERRA data. Unlike

previous work (e.g., Dai 2008; Ye et al. 2013; Sims and

Liu 2015), this study attempts to find the snow–rain

transition threshold directly using the 2-m air tem-

perature from MERRA data. Of course, the station-

observed surface temperature is preferable to determine

the snow–rain transition. In fact, it will be demonstrated

in Fig. 2 that it is more effective to separate rain and

snow using the station-observed surface temperature.

However, there are often no station observations geo-

graphically close enough to the satellite pixels, which is

particularly true over the station-sparse regions (e.g.,

Rocky Mountains, Siberia, and the Tibetan Plateau),

which makes it impossible to collocate the station ob-

servations to satellite observations. For this specific

reason, theMERRA 2-m air temperature, instead of the

station-observed surface temperature, is used as the

predictor for the snow–rain transition.

The likelihood of snowfall under different surface

elevation scenarios using the station-observed surface

temperature clearly shows that the snowfall probability

is larger corresponding to the same surface temperature

in the higher-elevation regions (Fig. 2a). In other words,

snow could occur in a relatively warm environment in

the higher-elevation areas. For example, corresponding

to the 0.5 snowfall probability, the surface temperature

is about 1.58C over areas with elevations less than 1km,

while it is about 2.58C over areas with elevations higher

than 2km.With a thinner air and lower air pressure over

the high-elevation region, the snowflakes in the atmo-

sphere tend to fall faster because of less drag force, and

therefore they can keep their original type even in a

relatively warm environment (Ye et al. 2013). The in-

creasing temperature threshold for snow–rain transition

over the high-elevation region has also been noticed by

Dai (2008) and Ding et al. (2014).

FIG. 1. The TB variations at V24, V88, andH1836 7 along the scan line over three selected regions, includingAmazon forest (7.58S–2.58N,

608–708W), Sahara Desert (58–158N, 208E–308W), and SGP (308–408N, 908–1008W).
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Next, the snowfall probability is calculated using the

MERRA 2-m air temperature in the same three eleva-

tion scenarios (Fig. 2b). Unlike the station-observed

surface temperature, the snowfall probability is almost

identical when the 2-m air temperature is colder than

28C over regions with elevations lower than 2km (blue

and green curves in Fig. 2b). However, a much higher

temperature threshold is evident over the regions with

elevations higher than 2km. To separate rain from snow,

it is clear that the narrower the transition region, the

more accurate the discriminant result will be. The nar-

rower transitional region in Fig. 2a again demonstrates

the superior performance of the station-observed sur-

face temperature for snow–rain separation. As pre-

viously stated, station-observed surface temperature is

preferable for snow–rain determination; however, the

sparse station network requires reliance on the

MERRA data.

Similar to previous studies (e.g., Dai 2008; Sims and

Liu 2015), the 2-m air temperature threshold corre-

sponding to the 50% snowfall probability is chosen as

the separation threshold. The threshold temperature for

regions with elevations below 2km is 0.658C and for

regions with elevations higher than 2km is 4.68C
(Fig. 2b).

6. Gauge-observed snowfall rate versus NMQ
snowfall rate

As previously mentioned, the NMQ rain-rate perfor-

mance has been extensively evaluated using gauge and

gauge-corrected radar observations. The performance

of the NMQ snowfall rate estimation has not yet been

evaluated. In this study, a preliminary comparison be-

tween gauge observations and NMQ estimates is per-

formed. Hourly snowfall rate observations are taken

from the NCDC integrated surface hourly dataset. Only

the gauge observations over approximately 482 first-

order stations in 2014 are included. A first-order station

is a site at which weather observations were taken by

National Weather Service employees or other certified

observers. These snow reports were also used by

Kongoli et al. (2015) to derive the snow–rain separation

method for ATMS. The 2-min NMQ estimates are ac-

cumulated to match the hourly gauge observations

(Fig. 3). Only NMQ observations with RQIs greater

than 0.5 are included in the comparison. The correlation

coefficient, RMSE, and bias are 0.65, 0.68mmh21,

and 22.9%, respectively. It appears that these two

measurements agree reasonably well. More detailed

comparisons (e.g., over different regions and for

FIG. 2. (a) Snowfall probability corresponding to different station-observed surface temperatures over three el-

evation scenarios. (b) Snowfall probability corresponding to different 2-m air temperatures from MERRA. The

correspondence between curve color and the elevation scenario is shown in (a).

FIG. 3. Scatterplot between gauge-observed snowfall rate and

NMQ snowfall rate over the CONUS in 2014 at about 482 first-

order weather stations.
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different snow systems) are needed in the future. The

purpose for this preliminary comparison is to demon-

strate that the high-resolution NMQ snowfall observa-

tions largely agree with surface gauge observations and

are therefore suitable to use to construct the snowfall

database for the ATMS retrieval algorithm.

7. Precipitation retrieval results

In this section, the precipitation retrieval performance

is demonstrated through case studies and statistical

analysis for both rainfall and snowfall. The geospatial

distribution of the precipitation over CONUS and over

the 608S–608N land region derived from the CONUS

database will also be shown.

a. Rainfall retrieval performance

1) CASE STUDIES

Three rain cases on 12 June, 3 July, and 8 September

2014 are selected (Figs. 4, 5). These three cases represent

very different rainfall systems (deep convection, hurri-

cane rainfall, and widespread stratiform) under different

climate regimes. For the deep convection case over the

FIG. 4. Three rain cases on 12 Jun, 3 Jul, and 8 Sep 2014 (top) observed by NMQ, (middle) retrieved by our algorithm (CICS), and

(bottom) retrieved by the MIRS algorithm.
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central United States on 12 June 2014, the local weather

office reported hail. Both our algorithm [denoted as Co-

operative Institute for Climate and Satellites (CICS) in

Figs. 4, 5] and MIRS capture the center of the convective

cell (Figs. 4a–c). Compared to theNMQobservations, both

algorithms overestimate the rainfall intensity in the center

of the convective cell. This overestimation is alleviated in

the CICS algorithm, which is more evident from the scat-

terplots (cf. Figs. 5a,d). The overestimation is a common

issue for all passive microwave retrieval results when there

exists a strong scattering signature butwithout proportional

heavy surface rainfall. For the hurricane case, it is found

that the heavy precipitation center is well captured by both

algorithms. MIRS slightly underestimates the heavy rain

over North Carolina. For the case over the western United

States with arid background, both algorithms are able to

detect the rainfall well. The CICS algorithm shows slightly

better performance, indicated by a smaller RMSE and

larger correlation coefficient (cf. Figs. 5c,f).

In summary, case studies demonstrated that the CICS

algorithmcanadequately capture the rainfall characteristics

for different rainfall systems under different climate

regimes. In addition, the CICS algorithm achieves a

comparable performance relative to MIRS. The CICS

algorithm is trained by the NMQ observations, which

very likely accounts for the slightly larger correlation

and smaller RMSE from the CICS algorithm in these

three case studies.

2) OVERALL RAINFALL RETRIEVAL

PERFORMANCE

The overall rainfall retrieval performance for the four

seasons in 2014 is presented in Fig. 6. The correlation

between the ATMS-retrieved rain rate and NMQ-

observed rain rate is 0.67, 0.66, 0.65, and 0.71 for

spring, summer, fall, and winter, respectively. The

RMSEs are 1.98, 2.17, 1.62, and 1.22mmh21 for these

four seasons. Additionally, overall the retrieved results

in these four seasons are positively biased with biases at

31.19%, 17.32%, 10.44%, and 6.61% from spring to

winter. Next, both rain rate and the one standard de-

viation corresponding to each retrieved rain rate are

FIG. 5. Scatterplots betweenNMQ-observed rain rate and retrieved rain rate by our algorithm andMIRS algorithm for the three rain cases

shown in Fig. 4.
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averaged in several small rain-rate bins (0–0.5, 0.5–

1.0, . . . , 25–30mmh21). The underestimation from the

ATMS retrieval results is evident when the rain rate is

larger than 15mmh21, which is especially obvious in

the summer and fall seasons (Figs. 6e–h). This un-

derestimation is probably caused by the nonunique re-

lation between surface precipitation and TB. In other

words, the same TB signature can result from different

combinations of surface background and precipitation

profiles (Kummerow et al. 2011; You et al. 2011; You

and Liu 2012). Because of this nonunique relation,

heavy precipitation (e.g., precipitation greater than

15mmh21 in this work) is underestimated since some

light precipitation possesses very similar TB signatures

to that from heavy precipitation. Other possible reasons

include the TB saturation due to heavy rainfall and the

inherent uncertainty associated with the Bayesian re-

trieval (Seo et al. 2007). Despite the evident un-

derestimation in the heavy precipitation scenario, the

one-standard-deviation error bar covers the dynamic

range of the NMQ-observed rain rate, which makes it a

valuable uncertainty metric. As expected, the one

standard deviation becomes larger as the rain-rate in-

tensity increases. The histograms of the NMQ-observed

rain rate and ATMS-retrieved rain rate agree well for

rain rates larger than 1mmh21, regardless of the seasons

(Figs. 6i–l). For the rain rates less than 1mmh21, large

discrepancies exist, particularly in the winter season.

These results are consistent with previous studies (e.g.,

Dinku et al. 2010; Laviola et al. 2013). It is clear from the

ATMS rain-rate histogram that there are too many light

rain-rate values (,1mmh21). One of the reasons is that

the larger FOV size over the edge requires averaging

many more NMQ points to match the V88 resolution.

By averaging more NMQ points, the mean rain-rate

values are inevitably smaller. These relatively smaller

values over the edge contribute to the retrieval result

over the center.

The overall retrieval performance in 2014 agrees

better near the center of the scan line (beam position

FIG. 6. (a)–(d) Scatterplots between NMQ-observed rain rate andATMS-retrieved rain rate in spring, summer, fall, and winter of 2014,

respectively. (e)–(h) The averaged NMQ and ATMS rain rate in several rain-rate bins (e.g., 0–0.5, 0.5–1.0, . . . , 25–30mmh21) using data

from (a)–(d). The corresponding averaged one-standard-deviation error bar in each small bin is overlapped. (i)–(l) The NMQ andATMS

rain-rate histograms from spring to winter. Note the x axis is on log-10 scale.
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from 21 to 76) than that over the edge (beam position

from 1 to 20 and 77 to 96), as indicated by larger cor-

relation, smaller RMSE, and lower bias (Fig. 7).

Comparing Fig. 7b with Fig. 7d, it is clear that re-

trievals at the edge of the swath underestimate rain

rates more than near nadir for rain rates larger than

15mmh21. Similar features are observed in the

snowfall retrieval results. As mentioned above, the

precipitation rate is smaller in the edge database be-

cause the larger FOV size requires averaging the NMQ

field in a much larger area. Therefore, the heavy pre-

cipitation would be underestimated more severely

over the edge if it indeed occurs. The larger variability

of FOV size in the edge database also likely contrib-

utes to the larger underestimates over the edge. For

example, the FOV size at beam position 21 is about 1.5

times larger than that at beam position 48 (at the very

center). However, the FOV size at beam position 96

(at the very edge) is about 3 times larger than that at

beam position 77.

3) GEOSPATIAL RAINFALL DISTRIBUTION OVER

CONUS

The NMQ and ATMS rain rates are averaged into a

18 3 18 grid box to examine the average daily pre-

cipitation on seasonal scales (Fig. 8). To compare the

retrieved results with those from NMQ, only

the precipitation pixels with RQIs larger than 0.5 are

considered for both rainfall and snowfall over CONUS.

For all seasons, all of the large-scale rainfall spatial

patterns observed by NMQ are captured by the

ATMS retrieval results, including the heavy rainfall

close to the Gulf of Mexico in spring and heavy

rainfall in the Florida Panhandle and in the central

United States in summer. However, some differences

also exist. For example, the daily ATMS rainfall is

FIG. 7. (a) Scatterplot between NMQ-observed rain rate and ATMS-retrieved rain rate in 2014 over the center of

the scan line (beamposition from21 to 76). (b) The averagedNMQandATMS rain rate in several rain-rate bins (e.g.,

0–0.5, 0.5–1.0, . . . , 25–30mmh21) using data from (a); the corresponding averaged one-standard-deviation error bar

in each small bin is overlapped. (c) As in (a), but for values over the edge of the scan line (beam position from 1 to 20

and 77 to 96). (d) As in (b), but for values over the edge of the scan line (beam position from 1 to 20 and 77 to 96).
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larger because ATMS estimates light rain more fre-

quently than NMQ. The overestimation over the

central United State in summer is also evident, which

is caused by the stronger scattering signature (prob-

ably due to hail aloft) without producing proportional

surface rain rate. The overestimate in winter over the

northeast United States is likely caused by the snow-

covered ground.

Overall, despite some regional discrepancies between

the retrieved and observed rain rate, the geospatial

pattern from the retrieved rain rate is largely consistent

with that from the NMQ observations.

FIG. 8. (a)–(d) Geospatial distribution of NMQ-observed rain rate over CONUS from spring to winter of 2014.

(e)–(h) Geospatial distribution of ATMS-retrieved rain rate over CONUS from spring to winter of 2014.
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4) GEOSPATIAL RAINFALL DISTRIBUTION

OVER 608S–608N

When developing a precipitation retrieval algorithm

based on regional observations (CONUS in this

study), a major concern is how to extend this algorithm

to other areas. Here, the ATMS algorithm was run over

land for 608S–608N using the database constructed by

collocated NMQ and ATMS observations over

CONUS. The same detection and retrieval procedure is

applied to snowfall retrieval. The retrieved rain rates are

averaged to 18 3 18 (Fig. 9). The result is compared with

GPCC gauge-analysis rainfall in January, April, July,

and October 2014. Since only the rainfall retrieval is

discussed in this section, theGPCC snowfall observation

is filtered out if there are no ATMS rainfall pixels in a

certain grid box (e.g., Siberia in January 2014).

The progress and retreat of major rainbands over the

tropical and subtropical regions [e.g., intertropical

convergence zone (ITCZ) rainband and the monsoon

rainfall over India and China] are well captured by the

ATMS-retrieved results. Compared with the GPCC

results, in general, the mean rain rate is larger. In

January and April 2014, more rainfall is observed by

ATMS over the Sahara Desert region, which is likely

caused by the false detection by the passive microwave

radiometer. Considering the independent data sources

are used, that is, GPCC results are generated from

gauge observations, while our results are based on

CONUS radar observations, discrepancies between

these two products are expected. Also, GPCC gauges

continually measure daily accumulations, whereas

ATMS has an instantaneous view at 0130 and 1330

local time, such that the precipitation diurnal cycle

introduces an observation bias.

The completeness of the database also contributes to

the discrepancy between GPCC and ATMS rain rates.

To demonstrate this issue, the distribution of the TB at

FIG. 9. (a)–(d)Geospatial distribution of theATMS-retrieved rain rate over 608S–608N in January, April, July, and

October 2014. (e)–(h) Geospatial distribution of the gauge-analysis (GPCC) rain rate over 608S–608N in January,

April, July, and October 2014.
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183.36 7GHz over CONUS and over the non-CONUS

land portion of the 608S–608N region are shown in

Fig. 10. The TB at 183.3 6 7GHz is chosen here purely

for demonstration. TBs at other frequencies show a

similar histogram distribution pattern. It is clear that the

TB distribution over CONUS in July 2014 is not iden-

tical to that over the 608S–608N region, where the TB is

slightly colder (Fig. 10a), which results in either false

rainfall detection or rain-rate overestimation. Never-

theless, these two TB distributions are similar, which

ensures that the major rainbands over the 608S–608N
land region are captured. In contrast, the TB distribu-

tions over CONUS in January 2014 are dramatically

different from those over the 608S–608N land region.

Specifically, most of the TBs over the 608S–608N land

region in winter are much colder than those over

CONUS. This characteristic will cause many snowfall

detection false alarms and large snowfall rate over-

estimations, which will be shown in the global snowfall

retrieval results (Fig. 14, described in greater

detail below).

In summary, it is demonstrated that only using the

CONUS radar observations to construct the database to

retrieve rain rate from ATMS can well capture the

progress and retreat of themajor rainbands (e.g., ITCZ).

Discrepancies exist betweenATMS retrieval results and

GPCC gauge-analysis product because of the different

data sources, the sampling frequency, and the database

completeness issues.

b. Snowfall retrieval performance

The snowfall retrieval performance is demonstrated

first through case studies, then the overall snowfall re-

trieval statistics are provided. Hourly automated snow

observations from ISD surface reports in the Rocky

Mountains area are also used to verify the snowfall de-

tection performance.

1) CASE STUDIES AND OVERALL STATISTICS

Two snowfall cases are selected (Fig. 11), including

the snowfall event over the Rocky Mountain region on

1 February 2014 and a heavy snowstorm over the New

England region on 14 February 2014.

For the case over theRockyMountain region, ATMS

detects a much broader snowfall occurrence area than

the NMQ observations (Figs. 11a,b). Automated

weather reports at the closest hour to the ATMS ob-

servations indicate the extent of the snowfall is rea-

sonable. Evidently, the NMQ observations miss almost

all the snowfall in the Rocky Mountain region because

of the terrain blockage, while both the NMQ and

ATMS capture the snow signature over the central

United States. In terms of snowfall intensity, the cor-

relation between the ATMS and NMQ is about 0.42

based on the pixels when both instruments detect

snowfall in this case. For the New England region snow

case (Figs. 11c,d), ATMS detects the center of the

snowfall from Connecticut to New Hampshire, but se-

vere underestimation is noticed in Maine and New

Brunswick. In terms of snowfall intensity, for this case

the correlation and RMSE are 0.62 and 0.80mmh21,

respectively.

Figure 12 displays the overall statistics for the

snowfall retrieval results. The correlation, RMSE, and

bias between the NMQ-observed snowfall rate and

ATMS-retrieved snowfall rate are 0.41, 0.66mmh21,

and 215.02%, respectively (Fig. 12a). The under-

estimation of snowfall rate is evident throughout the

FIG. 10. (a) The TB at 183.36 7GHz over CONUS and the 608S–608N land region, except CONUS, in July 2014

with T2m . 08C. (b) The TB at 183.3 6 7GHz over CONUS and the 608S–608N land region, except CONUS, in

January 2014 with T2m , 08C.

MAY 2016 YOU ET AL . 1615

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/31/22 07:20 PM UTC



snowfall range, which is likely due to surface con-

tamination and weak scattering signatures from shal-

low snowfall events (Wang et al. 2013; Kongoli et al.

2015). The discrepancy between the NMQ and ATMS

is further demonstrated by snowfall rate PDFs

(Fig. 12c). Obviously, there is too much light snowfall

in the retrieved snowfall results, which is responsible

for the underestimation illustrated in Fig. 12b. Similar

to rainfall retrieval results, this underestimation can

be partially explained by the larger FOV size over

the edge.

2) GEOSPATIAL SNOWFALL DISTRIBUTION OVER

CONUS

The geospatial distribution of the NMQ-observed

and ATMS-retrieved snowfall are shown in Fig. 13. In

the calculation process, only the pixels with RQI

greater than 0.5 are included. The most striking feature

FIG. 11. (a) Snow event observed by NMQ on 1 Feb 2014 in the Rocky Mountain region. (b) As in (a), but for the

retrieval by ATMS. The magenta plus signs represent the snow occurrence extracted from the ground automated

weather reports. (c) Snow event observed by NMQ on 14 Feb 2014 in the New England region. (d) As in (c), but for

the retrieval by ATMS.

FIG. 12. (a) Scatterplot between NMQ-observed snowfall rate and ATMS-retrieved snowfall rate. (b) The averaged NMQ and ATMS

snowfall rate in several snowfall rate bins (e.g., 0–0.2, 0.2–0.6, . . . , 6–10mmh21) using data in (a). The corresponding averaged one-

standard-deviation error bar in each small bin is added. (c) The snowfall rate histograms from ATMS and NMQ.
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is that NMQmisses almost the entire snow event in the

Rocky Mountain region in Fig. 13a, which is demon-

strated by the ground gauge observations (Durre et al.

2013). In contrast, the snowfall accumulation is evident

in the Rocky Mountain region from the ATMS re-

trieval results. The snowfall pattern from the central to

the easternUnited States agrees fairly well between the

NMQ observations and ATMS-retrieved results, with

slightly overestimation from ATMS in the central

United States.

Like the rainfall retrieval over the 608S–608N
region, a similar procedure is applied to the ATMS-

retrieved snowfall rate from January to April 2014.

Only the results in January 2014 are shown in Fig. 14.

The most evident feature is the artificially large re-

trieved snowfall rate over southeastern Canada, the

Tibetan Plateau, and Siberia. This large snowfall rate

overestimation is caused by the much colder TBs in

these regions, which is illustrated in Fig. 10b for the TB

distribution at 183.3 6 7GHz. The much colder TBs

result in frequent snowfall detection false alarms and

overestimations. The retrieved snowfall rate magni-

tude in western Europe seems reasonable, though

independent ground observations are needed to verify

this result.

8. Conclusions and discussion

Built upon a previously published algorithm for

SSMIS (imager), a prototype precipitation algorithm for

ATMS (sounder) using 3-yr coincident NMQ ground

radar observations and ATMS observations over

CONUS was developed. The major modifications to the

SSMIS algorithm addressed the varying footprint size of

ATMS pixels, the lack of error estimates associated with

the retrieval, and the applicability of the algorithm to

the near-global domain.

Three cases over CONUS demonstrate that this pro-

totype algorithm is able to capture the major charac-

teristics of these rainfall systems with correlation

varying from 0.68 to 0.79. In these three cases, the al-

gorithm achieved a comparable performance relative to

MIRS. The correlation coefficient is about 0.66 for all

four seasons, and the RMSE varies between 1.27 and

2.25mmh21. The one-standard-deviation error bar well

covered the dynamic range of the ground radar

FIG. 13. (a) Geospatial distribution of the NMQ-observed snowfall rate over CONUS in 2014. (b) As in (a), but

observed by ATMS.

FIG. 14. Geospatial distribution of the ATMS-retrieved snowfall rate over 608S–608N in

January 2014.
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observations. A major improvement in this work is that

the retrieval produces the uncertainty (variance) asso-

ciated with each precipitation estimation. Like all pas-

sive microwave retrieval results, the heavy precipitation

is underestimated because of the nonunique relation

between rain rate and TBs. The geospatial pattern of the

retrieved rain rate is largely consistent with that from

NMQ observations; however, the magnitude often dis-

agrees. For example, the heavy rainfall in the central

United States and in the Florida Panhandle is well

captured by both NMQ rain rate and ATMS-retrieved

rain rate. ATMS overestimates rain rates over CONUS,

which is primarily due to frequent false alarms of light

rainfall from ATMS.

To demonstrate that this prototype algorithm can be

extended to retrieve precipitation in other regions,

precipitation rates are calculated over the 608S–608N
belt. Although the databases are constructed by ground

radar observations over CONUS, the annual movement

of the major rainbands in tropical regions (e.g., ITCZ)

and in midlatitudes (monsoon rainfall in India and

China) is evident. The results are also consistent with the

GPCC gauge-analysis product, although average daily

rain rates are overestimated by ATMS. This over-

estimation is likely caused by the different data sources

and database completeness issues. In this study, the

ATMS retrieval results are trained using the NMQ

ground radar observations, while the GPCC is a gauge-

analysis product. For the database completeness prob-

lem, the TB at the 608S–608N land region is slightly

colder than that over CONUS, which contributes to the

overestimation. The satellite sample frequency issue

(i.e., snapshot vs accumulation; Soman et al. 1995) may

also contribute to the overestimation. Because of the

preliminary nature of these results, a detailed evaluation

of the retrieval results is needed on a global scale for

algorithm improvement in the future.

For the snowfall retrieval performance, ATMS

captured a snowfall event over the Rocky Mountain

region, as demonstrated by ground gauge observations,

while the NMQ observations almost entirely miss the

snowfall event over that region. The snowfall pattern

from the central to the eastern United States is well

captured by the ATMS results, which largely agree with

the NMQ observations. Similar to the rainfall retrieval,

we also applied the snowfall retrieval algorithm to the

land portion of the 608S–608N belt. Artificially large

snowfall rates are obtained in southeastern Canada, the

Tibetan Plateau, and Siberia. This is caused by the much

colder TBs in these regions, which results in frequent

snowfall detection false alarms and overestimations.

The satellite community is continuing to pursue new

algorithms for precipitation retrievals for passive

microwave sounders. For example, the Goddard pro-

filing algorithm (GPROF) and the Global Satellite

Mapping of Precipitation (GSMaP) are currently be-

ing adapted to retrieve the precipitation from sounders.

Additionally, the snowfall detection/retrieval capa-

bility by passive microwave sensors continues to be

researched. This study contributes to the field by in-

troducing replicable techniques for rain–snow separation

and precipitation retrievals from cross track–scanning

radiometers.
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